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In the frame of operator-algebraic quantum statistical mechanics we calculate
the grand canonical equilibrium states of a bipartite, microscopic mean-field
model for bipolaronic superconductors (or anisotropic antiferromagnetic
materials in the quasispin formulation). Depending on temperature and chemi-
cal potential, the sets of statistical equilibrium states exhibit four qualitatively
different regions, describing the normal, superconducting (spin-tlopped), charge
ordered (antiferromagnetic), and coexistence phases. Besides phase transitions
of the second kind, the model also shows phase transitions of the first kind
between the superconducting and the charge ordered phases. A unique limiting
Gibbs state is found in its central decomposition for all temperatures, even in
the coexistence region, if the thermodynamic limit is performed at fixed particle
density (magnetization).
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1. INTRODUCTION

The aim of this paper is the determination of the phase diagrams and of the
limiting Gibbs states of a homogenized Hubbard like model. The original
Hamiltonian with short range interaction was introduced in refs. 1 and 2
(see also ref. 3) for systems with bipolaronic interactions leading to super-
conductivity of condensed bipolarons:
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Here bi* is the creation operator of a bipolaron at the site i, ni the corre-
sponding occupation number operator, and E < i ; j > the sum over nearest
neighbours. In ref. 4, the model is discussed in the context of high- Tc super-
conductors. In the quasispin formulation the Hamiltonian describes an
anisotropic antiferromagnet. The same kind of interaction can be found in
the literature for lattice gas models of liquid helium.(5,6) In many investiga-
tions, the equilibrium states of this model at finite temperatures are treated
in various mean-field approximations. It was observed that, depending on
some "parameters", a first order phase transition (e.g., for the anisotropic
antiferromagnet) can split up into two transitions of second order (a super-
solid phase in a lattice gas model of liquid helium, resp. a superconductive
and charge ordered phase in the above noted bipolaronic systems). This
effect is related with the problem of "bicritical" and "tetracritical" points,
discussed more or less phenomenologically in the literature.(7-10) We focus
here on a microscopical derivation of the equilibrium states by means of
the limiting grand canonical ensemble. It is in this set up where the first
order transition takes place. The splitting of the first order phase transition
into two continuous phase transitions will be treated elsewhere, using an
ensemble with suppressed particle fluctuations.(11)

The macroscopic-thermodynamic properties of the model will be deduced
in the frame of operator-algebraic quantum statistical mechanics.(12,13)

With the intention of using the generalized mean-field frame, we replace the
original Hamiltonian with nearest neighbour interaction by a homogeneous
one, which is obtained by a certain form of symmetrization. Symmetrizing
usual interactions (which are only translation invariant) over the lattice is
the systematic way to obtain the mean-field approximation in terms of a
new quasi-microscopic model. If the original interaction is an element of the
largest Banach space of interactions used in ref. 14, the resulting mean-field
model obtained by symmetrization falls into the class, which is in virtue of
rigorous developments(15-18) completely under theoretical control. The
existence of the limiting equilibrium and non-equilibrium dynamics (with
nontrivial classical part) and of the limiting free energy density as well as
the validity of so-called variational principles are ensured. Depending,
however, on the kind of symmetrization, various mean-field schemes may
arise: If it is performed for the above bipolaronic model uniformly over the
whole lattice, we find the analogue to the mean-field ansatz in refs 19
and 20. If a bipartite sub-lattice structure is retained during the symmetriza-
tion, the ansatz of refs. 1 and 2 is found. Only the clear separation of these
procedures avoids the confusion, which has arosen in the literature. This is
why details of the second procedure will be described in Section 2 leading
to the basic model Hamiltonian of this paper. (For another scheme of a
mean-field like approximation of the Hubbard model, cf. ref. 21.)
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We evaluate the thermodynamic properties, especially the different
phase regions, of our model with a special emphasis on the so-called limit-
ing Gibbs states. These are by definition the accumulation points of the net
of the local (here grand canonical) equilibrium states. One knows by a
variational principle, that the limiting Gibbs states minimize the limiting
free energy density. They are special equilibrium states, which exhibit still
the (internal) symmetries of the original local Hamiltonians, even in the
case of phase transitions. The set of all eqilibrium states for a given tem-
perature and interaction—defined just by minimizing the free energy
density—is a w*-compact face and a Bauer-simplex of the statistical state
space. Its extremal boundary are the pure phase states, which in general
have a lower symmetry than the limiting Gibbs states. If the extremal
boundary is just one orbit of the broken symmetry group its ergodic mean
is the only fully invariant equilibrium state and coincides thus with each of
the limiting Gibbs states. In this most frequent case of a unique limiting
Gibbs state, its unique extremal decomposition (which coincides with the
algebraic central decomposition into pair-wise disjoint factor states) covers
all pure phase states and thus determines all of the equilibrium states by
various forms of mixing the pure phases. (Note that the free energy density
is an affine funtion of the states and retains its minimal value during this
mixing of minimal pure phase states.)

The usual strategy in many body physics is to approximate directly the
pure phase states by introducing appropriate, symmetry breaking bound-
ary conditions while going into the thermodynamic limit. For lattice
systems these are in first line additional interactions with the environment
(including the zero interaction for "free boundary conditions"). Other
forms of subsidiary conditions may be represented by singular external
interactions. For mean-field models it has been demonstrated in ref. 22 that
for each pure phase there is a net of perturbations, which vanish in the
thermodynamic limit, such that the modified limiting Gibbs state is the
prescribed pure phase state. Since there is, however, no systematic way to
obtain all pure phases in the latter manner, the determination of the limit-
ing Gibbs states for free boundary conditions has some advantages, if it
can be carried through at all.

The limiting Gibbs states are most frequently determined via a net of
local reduced Hamiltonians with fixed chemical potential. In the
coexistence region the particle density is a multi-valued function of tem-
perature and chemical potential. We are able to demonstrate that a given
particle density (instead of the chemical potential) determines a unique
limiting Gibbs state in the coexistence region of the first order phase tran-
sition. The proof of uniqueness for such a case was an open problem for a
long time (comp. ref. 23). Especially it is described in ref. 24, how at the
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first Van der Waals conference in 1937 it was still a controversial question,
whether statistical mechanics is able to produce instead of the meta- and
instable parts of the isotherms for a fluid the stable coexistence line with
variable particle density at fixed B and u.

Emphasizing the superconductor interpretation another central point
is to describe the nature of the superdonducting condensate, which most
concisely is charcterized by the mathematical form of the condensed pair
operators. These operators can be formed in the GNS-representation over
the limiting Gibbs state by averaging the normal pair operators (in the
representation dependent strong operator topology). It belongs to the
advantages of such simplified models as the considered one, that these
operators can be calculated explicitly, allowing for a comparison with the
general idea of Goldstone bosons.

The paper is organized as follows: In Section 2, we give a sketch of the
necessary operator-algebraic framework, define the local Hamiltonians and
their symmetrization, and introduce the essential internal symmetries. In
Section 3, the concepts of general equilibrium and of pure phase states are
introduced, and the limiting Gibbs states are formulated with the aid of
their central decomposition. In Subsections 3.1 and 3.2 we determine the
limiting Gibbs state at fixed chemical potential u, resp. particle density n.
In particular, we demonstrate a unique limiting Gibbs state in each phase
region, even in the coexistence region of the first order phase transition
(Theorem 3.3). In the Conclusions we discuss beside other things the con-
densed pair operators in the superconducting phase.

Altogether, the present model discussion is intended to illustrate the
general scheme of operator-algebraic mean-field theory. The arising phase
diagram, with two different kinds of broken symmetry, provides a non-tri-
vial application for the thermodynamic formalism as worked out in ref. 25.
The introduction of (weak) inhomogeneities by site dependent terms in the
interactions and a kind of continuum limit for the momenta seem to be
possible in a rigorous form. These modifications would make more trans-
parent the connections to further models for strongly correlated electronic
systems (cf., e.g., contributions in refs. 26 and 27).

2. INTRODUCTION OF THE MODEL

The first step for introducing the quantum statistical formalism in the
thermodynamic limit is to specify the quasi-local C*-algebra of observables
for the infinite lattice. On each lattice site we consider a quantum system
with a finite number of relevant levels which we represent at first by a
matrix-algebra B. Later on we introduce a bi-partite lattice structure and
combine two B's to the cell algebra 33. The explicit taking into account of
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the sub-lattice structure helps to avoid a confusion in the literature and
leads to the appropriate symmetrization which is performed in accordance
with the general microscopic mean-field strategy.

2.1. The Quasi-Local Algebra

We start with a lattice k with two dimensional quantum systems
at each site i e K. The corresponding algebra of observables is given by
B i=B=M2(C) for all ieK. The local algebra UA :=® i e AB i for
A e 5 = {A' c K | | A' | < oo} includes the observables of a finite subregion
A c K. With the usual set-inclusion and the corresponding canonical
embedding of analgebra UA into UA', provided Ac A', the C*-inductive
limit(28) gives the appropriate abstract quasi-local C*-algebra U of the
infinitely extended lattice system:

The local algebras UA may be considered as subalgebras of U and then it
holds

Especially, a certain model is defined by a family of local Hamiltonians HA

for each finite lattice region A e 5, where HA is in UA c U.
An isomorphic algebra, more suitable for our purpose, is constructed

by rearranging the original lattice into two equally sized sub-lattices (see
Fig. 1). Then we form a new lattice point by collecting one point of each
sub-lattice. Again, the set of the twofold sites is a lattice, now denoted

Fig. 1. Sub-lattices and the quasi-local algebra.
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by K. The C*-inductive limit of the local algebras UA, A e S :={A' c K' |
|A' | < 00} leads now to

where the Bi are isomorphic to B = B ® B =M4(C), for all i eK.
Obviously, U and U are algebraically isomorphic. Nevertheless, the second
form U is more suitable to treat our mean-field approximation with a sub-
lattice structure and leads to another type of internal and permutation
symmetries than by using U.

2.2. The Local Pairing Interaction and Its Microscopic
Mean-Field Version

As an example for a net of local Hamiltonians HA, A e S, we consider
a certain kind of Hubbard-Hamiltonians for a system with local pairing
interactions:

The summation E<i;j>eA runs over nearest neighbors i, jeA, bi is the
annihilation (creation) operator of a local pair at the lattice site i, and
ni : = bi*bi is the occupation number operator. They are characterized in the
"pair-algebra" by the following commutation relations (typical for hard-
core Bosons; for the relation of this algebra to the CAR-algebra, see
ref. 29):

The operators bi and ni are represented by 2 x 2-matrices embedded in
U{i}CU:

The constant v in Eq. (2.3) is an effective (Coulomb-) interaction between
neighboring sites, and ? describes the hopping frequency of a local pair. We
assume both v and ? to be positive. Besides these two interactions, we shall



consider a term which is linear in the particle number. It will be treated
explicitly in Section 3 as a part of the chemical potential u. The
Hamiltonian (2.3) is motivated in refs. 1-3 (cf. also ref. 19) for bipolaronic
interactions. For an overview and more complicated models see ref. 4.
Obviously, if we write HA in the quasispin representation, it is similar to
the Hamiltonian of an anisotropic antiferromagnet.

The simplest way to introduce mean-field versions is to replace HA by
symAHA , where symA: UA -> UA is given by
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The summation runs over all bijections P(A) of K with P(A) : =
{e: K-> K | e ( i ) = i for i e A}. O is a representation of P(A) in Aut(U) ,
defined by

for and

The family of symmetrized Hamiltonians symAHA , arising from HA in
Eq. (2.3), leads to a simple mean-field model as treated in ref. 19. It shows
in the thermodynamic limit a phase with condensed local pairs below some
critical temperature (which depends, of course, on the particle density n, or
the chemical potential u). The essential properties of the condensed particle
structure in this model are the same as in the BCS-model if the lattice of
momenta for the BCS-model is replaced by a lattice in configuration
space.(20,30)

For physical reasons the local Hamiltonians HAeUA, A e S, in Eq.
(2.3) should, however, be considered as elements of UA, A e S, where a
bipartite sub-lattice structure has been incorporated. If the bi-partite lattice
has the property that each nearest neighbour of a site in sub-lattice 1 is an
element of sub-lattice 2 and vice versa, there are only products of operators
in different sub-lattices in HA. Thus we distinguish the operators bi, bi and
ni, ni for i e K (they are represented as in Eq. (2.4), except that the
matrices have to be embedded in M 2 (C) ®1 resp. 1 ® M 2 (C) according to
the sub-lattice index 1 or 2). Now we symmetrize with respect to A e S and
arrive at
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with x1 =x(x)1 , x2 = 1 (X) x e B for x e B. Here, z(A) is the averaged num-
ber of nearest neighbors in A. The limit limA K z(A) = z exists if A tends
towards K in the sense of van Hove.(13) z is the sum of the number of
nearest neighbors in sub-lattice 2 of a site in sub-lattice 1 (or vice versa).

We take (2.6) as our basic model Hamiltonian, which will lead via the
thermodynmic limit to a much richer phase structure than that being
obtained by the uniform symmetrization (2.5).

2.3. Symmetries of the Mean-Field Hamiltonian

By construction H M F H e U is invariant under all permutations
e e P(A) of AeS

0 e ( H M F H ) = H M F H , for all a e P(A) and A e S

Besides exhibiting spatial homogeneity in each sublattice, the model is
invariant with respect to the internal symmetries gauge transformations and
interchange of sub-lattices. Quite generally internal symmetries are intro-
duced as follows: For all unitary u e B, there is a unique C*-automorphism
aU of U such that

The gauge group arises in this way from the transformations

with n = n1 + n2, giving locally the explicit form

where the local particle number operator is

In the case of our two sub-lattices, the corresponding exchange group
is given by S2 := {1, u12} c B with u1 2(x® y) = y®x for x, y e B. The
corresponding automorphisms au, u e S2, of U are obtained via Eq. (2.7).
A straightforward calculation shows for each A e S



The group generated by S2 and T is denoted by H. It is a compact sub-
group of the group of all unitaries in 93 and thus has a unique Haar
measure uH.

In the case v = 4t with u = 2 z ( A ) t (this corresponds to half filling),
there are even more internal symmetries—essentially SO(3)—but this case
will be excluded here. (Only for v > 4t we will find the first order phase
transition we are interested in.)

Without changing the notation we consider wB,HA as a state on U by con-
tinuation by means of the trace state. In addition to the inverse tem-
perature ft, we introduce the chemical potential u via HA(u) = HA- uNA ,
in order to fix agiven particle density n in the state wB,H

A
(u), such that

(1/ \A\)<wB , H
A

( u );NA>=n.
Now, a limiting Gibbs state wB,u is by definition a weak*-accumula-

tion point of the net ( w B , H
A

( u ) ) A e S. The state space G(U) of U is weak*-
compact, U containing a unit, such that at least one accumulation point
exists.2 Since HMFH is invariant under permutations e e P(A), each limiting
Gibbs state has to be homogeneous, i.e., it is an element of G p ( U ) =
{w e G(U) \ w ° O a = w for all e e P = (UA e s P(A)}. The set of all permuta-
tion invariant states G p (U) has a well known structure: G p (U) is a Bauer
simplex(31) with (compact) extremal boundary d e G p (U)= {(x)d |
Q € G ( B ) } , where (x)d denotes the product state with < (x)d; ®ieA xi> =
I I i e A t r (dx i ) for all AeS and (x)ieA xi e U. The decomposition of a state
w e Gp(U) into extremal homogeneous states coincides with the central
decomposition(12) of (a into classically pure states (factorial states). We
parametrize the central measure uw by the compact set G(B) and write

2Convergence in the weak*-topology is simply the convergence of all expectation values.
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3. THE PURE PHASES AND THE LIMITING GIBBS STATES

The unique equilibrium state of a system in the finite region A e S with
local Hamiltonian HA at inverse temperature B= 1 / k B T>0 (with absolute
temperature T and Boltzmann constant kB) is given by the local Gibbs
state wB,H

A as an element in the state space G(UA) of the local algebra UA



Moreover, concerning the internal symmetries H (gauge transformations T
and interchange of sub-lattices S2) we additionally find that a limiting
Gibbs state wB,u satisfies wB,u°ah = wB,u, for all h e H. The subset of
H-invariant states in G p (U) is denoted by G H ( U ) . Again, G H ( U ) is a
simplex, since P times H is a so-called large group of automorphisms,(32)

the extremal boundary of G H ( U ) being denoted by d e G H ( U ) . Since
G H c G p ( U ) , all elements w e d e G H ( U ) are decomposed uniquely into
elements of d eGp(U).

More precisely we have:(25,35) w e d e G H (U) , if and only if there exists
a (8)0WedeGp(U) with

i.e., we set tz(A) = \ and neglect the A-dependence of z(A). This allows
to perform all limits with respect to the whole index set 2. If the
A-dependence of z(A) is treated explicitly, the limits have to be performed
along a suited subnet in the sense of van Hove but all results remain
unchanged. Finally, we suppress in the following the index MFH of
H M F H (u) , and write for the net of local reduced Hamiltonians, which
define the grand canonical equilibrium states to be discussed,
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That is, (w is obtained in this case from an extremal permutation
invariant state by the minimal form of an H-symmetrization procedure.
Spontaneous symmetry breaking takes place if {®dw} = (oH( xdw) : =
{®dw°ah \ h e H} . ( 3 3 , 3 4 ) In this case the central measure uw of w becomes
certainly non-trivial. Obviously, uw is concentrated on the orbit OH(xdw)
and may be determined with the help of uH and the broken symmetry
(possibly a subgroup of H). If w e G H (U) but wEd e G H (U) , there is no
general method to find uw, a case which is treated in Subsection 3.2 below.

Assume for the Hamiltonian HMFH(u), Eq. (3.1), that t z ( A ) > 0 . Then
this parameter can be eliminated if we make the following transformation:
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3.1. The Pure Phases and the Limiting Gibbs States
at Fixed Chemical Potential

In the first step we calculate the equilibrium states of the model,
defined by the local Hamiltonians H A ( u ) of Eq. (3.4) at fixed B>0 and
fixed u e R . This problem fits into the general scheme of refs. 15-18 (see
also ref. 35):

The starting point is that each limiting Gibbs state wB,u of a model
(from a well characterized class) minimizes the functional of the free energy
density restricted here to the domain Gp(U):

where the functionals of the local free energy density are as usual

with dw being the density matrix of w \ u A .
The limit of f A (B , HA,w) in Eq. (3.5) exists according to refs. 15

and 17. Moreover, w-»f(B, u, w) is an affine functional on GP(U). Due to
the affinity of f(B, u , . ) , all states ®d in the support of the central measure
uB,u of wB,u minimize the free energy density as well and belong to the set
of the statistical pure phase states.

The stationarity of the free energy density leads for the pure phase
product states to a necessary condition, which writes for the one-cell com-
ponents deG(B) as the self consistency equation:

The effective one-cell Hamiltonian h e f f (Q), depending on the pure phase to
be determined, can be written down quite generally, even for non-poly-
nomial mean-field interactions (being the total differential of the internal
energy density as a function of the pure phase components). It belongs to
the merits of operator-algebraic mean-field theory to have clarified the con-
nection between the original local, model defining Hamiltonians and the
effective Hamiltonians via representation theory in the thermodynamic
limit. Let us remark that the summed-up, effective one-cell Hamiltonians
constitute only part of the dynamical Hamiltonians associated uniquely
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with the representation. For our quadratic interaction one arrives at an
expression, which coincides up to additive constants—without any physical
meaning—with the result of the formal mean-field manipulations

The solutions Q of Eq. (3.7) have to be evaluated for fixed ueR. There are
in principle 4 types of solutions of Eq. (3.7), each of them characterizing
a type of product state with a certain broken internal symmetry (see
Table 1).

A numerical analysis shows, however, that there are only 3 types of
the above solutions with minimal free energy density: The N-, the S-, and
the CO-solutions, which constitute the different pure-phase regions of the
model system, namely the normal, superconducting, and charge ordered
phases, cf., Fig. 2.

Defining the set G(B, u) of equilibrium states for given temperature
and chemical potential (i.e., for a given point in the phase diagram of
Fig. 2) as all minimal states of the free energy density (with the parameters
B and u), one concludes that this is a face of GP(U): A minimizing state
can only be decomposed into minimizing states. Hence the extremal
boundary of G(B, u), that are by definition all of the equilibrium pure
phase states, is the intersection of d eG p(U) with G(B, u) (being a direct
consequence of the face property). Since the decomposition over d e G p (U)
is unique, the decomposition of an equilibrium state into pure phases is
unique, too, and G(B, u) is a (Bauer) simplex. This means the other way

Table 1. Solutions of the Self-Consistency Equation (3.7), Broken
Symmetries and the Corresponding Phase States

State

tr(dn1) = tr(dn2),
tr(db1) = tr(db2) = 0

tr(dn 1 ) = tr(dn2),
t r (db 1 ) = t r ( d b 2 ) = 0

tr(dn1) = tr(dn2),
t r (db 1 ) = tr(db2) = 0

tr(dn1) = tr(dn2),
t r (db 1 ) = tr(db2) = 0

Broken symmetry

gauge invariance

sub-lattice permutations

sub-lattice permutations
gauge invariance

Macroscopic pure phase

Normal phase (N)

Superconducting phase (S)

Charge ordered phase (CO)

"Mixed" phase (M)
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Fig. 2. (T, u)-phase diagrams for different values of v. The phase transitions N-S and N-CO
are of the second kind, while the transition S-CO is of the first kind.

round, that all states in G(B,u) are obtained by various (may be con-
tinuous) ways of mixing the pure phases.

Since a limiting Gibbs state retains all of the (permutation and) internal
symmetries, its unique extremal decomposition measure must be H-invariant.
If the pure phases constitute just a single H-orbit there is only one invariant
probability measure providing just one limiting Gibbs state by integrating
over the pure phases. In the interiors of the thermodynamic phase regions
of our model, determined by the selfconsistency equations, we find in fact
just one H-orbit of the pure phases and are thus able to write down the
unique limiting Gibbs states. According to formula (3.3) each of the limiting
Gibbs states is extremal H-invariant and cannot be decomposed into other
H-invariant states.

In the N-phase region we find a limiting Gibbs state wB,u e d e G p ( U )
of the following form:
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The limiting Gibbs state in the CO-phase region is given by

with a two-component orbit of gauge invariant pure phase states, which
have broken lattice-exchange symmetry. In the S-phase region the limiting
Gibbs state is a continuous integral (defined in the w*-topology):

The broken gauge symmetry in the pure phase states gives rise to the
macroscopic phase angle and the non-vanishing expectations for the pair
operators. These typical features for super conductivity are here not com-
bined with charge ordering.

The determination of the mean-field values n1 = t r (gn 1 ) , n2 = tr(gn2),
(A/2) e-i9 = t r ( g b 1 ) = tr(gb2), and n = n1 + n2 are part of the self-con-
sistency problem for Q = Q, Qik, Q9 in Eq. (3.7).

We see from the above formulas, that the different phase regions have
not only different broken symmetries in the pure phase states but that even
the sets of equilibrium states G(B,u) are topologically inequivalent.(25)

Both aspects characterize a phase transition while crossing the boundaries
of the phase regions, when one uses the (quantum) statistical state concept,
and not that of usual phenomenological thermodnamics. In this statistical
conceptual frame one would define a phase transition of the second kind by
a smooth variation of the pure phases, resp. of the sets G(B,u) in the sense
of ref. 25 and a phase transition of the first kind by a discontinous varia-
tion of these statistical equilibrium states. The transition "point" (what is
statistically the set G(B,u) of a phase transition of the second kind is then
by definition a critical point.

Our evaluations of the pure phase states show that the phase transi-
tions N-CO and N-S are of second kind, while the S-CO phase transition
is of first kind, which is seen, e.g., by the discontinuous variation of the
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Fig. 3. n(u) tor various temperatures at r > 4. 7, is the largest temperature where the
S-phase exists, comp. Figs. 2 and 4. For further details, see Subsection 3.2.

particle density (cf. below). The latter aspect is illustrated in Fig. 3. More
precisely there is on the boundaries N-CO and N-S still a unique N-phase
solution (as a special case of an H-orbit), which smoothely develops into
the different CO-resp. S-phase solutions. In contrast to this, there exist two
orbits of solutions on the S-CO boundary, corresponding to the broken
gauge symmetry and to the broken sub-lattice exchange symmetry. Thus
Eq. (3.3) cannot be used to construct a limiting Gibbs state. In order to get
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an H-invariant equilibrium state one has rather to integrate the pure
phases over the two seperate orbits and to mix the results:

Since every H-invariant state obtained by integrating over the pre-
viously calculated pure phase states must have the form (3.12), this holds
true also for the limiting Gibbs states, where their value l e [0, 1] is not
determined and the question of uniqueness is not solved up to now.

The dependency of the various phases from the particle density is quite
generally of interest for applications. Thus we calculate the relationship
between ueR and n = n1+ n2 e]0, 2[. We find for each of the pure phases
a certain function n(n) which is determined by the solutions of Eq. (3.7):

with An = n2 — n1. We can invert these equations in the regions of their
validity and find a strictly monotonous function R e u -> n (u ) . This func-
tion is continuous (i.e., nN(u) = ns(u), n N (u ) = nco(u)) on the N-S and
the N-CO boundaries, while it changes discontinuously on the S-CO
boundary. This makes explicit the analytical background for the already
mentioned Fig. 3.

Using the function n ( u ) , we have plotted a (T, n)-phase diagram in
Fig. 4. Here, the critical chemical potential u of the S-CO transition is con-
stant over a coexistence region of the two phases, where in its interior a
pure phase state with the corresponding particle density does not exist. The
N-S and the N-CO boundary can be calculated explicitly by a Landau
expansion of the free energy density. One finds along these boundaries the
critical temperatures as functions of the densities:

Our derived coexistence region contrasts the findings in refs. 1 and 2,
where there is obtained a pure M-phase (listed in our Table 1 also as a
pure phase, being however instable in our set up), and where all phase
transitions are continuous. (We come back to this point in ref. 11.)
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Fig. 4. (T, n)-phase diagram for different values of v.

3.2. The Limiting Gibbs States at Fixed Particle Density

In order to investigate the uniqueness of the limiting Gibbs states on
the S-CO phase boundary we perform the thermodynamic limit at a fixed
particle density n e ]0, 2[, i.e., we determine for each local region A e S a
uA e a such that ( l / \A\)<wB H A ( u ) ; A^> =n. Then we have to analyze the
convergence properties of the corresponding chemical potentials HA in
the thermodynamic limit. They are a consequence of the concavity and the
convergence of the free energy densities, (3.5), (3.6). The arguments for the
convergence of the local chemical potentials outside the coexistence region
can be taken over from ref. 20 (where BCS- and mean-field Hubbard models
on the uniform lattice are treated at fixed particle density while going into
the thermodynamic limit). Here, we have to consider this convergence also
in the additional S-CO transition with its discontinuous variation of the
particle density. We assume that y>4 , which implies that this transition
exists indeed for low temperatures T< Tc (cf. Fig. 2, lower diagram).

The differentiation of the respective free energy densities allows us to
determine the particle densities on the local, as well as on the global level
(Lemma A.I) .
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Lemma 3.1. Let be {J>/3C>Q, ^ u e R , and / n ^ j u l , ^ 2 , where
y"i,2=(«i,2(/?) are the chemical potentials at which the S-CO transition
takes place.

(i) For AeS, nA(^i] := (a/"^"1; NA/\A\y and ne]0 , 2[, there
exists a unique JUA = ̂ A(n) e R, such that nA(fiA) = n.

(ii) Define

which limit exists. Then there exists for all n e ]0, 2[, a unique ̂ 0 e R, such
that n(fi0)=n. Here, we choose for all n in the two coexistence regions
of the S-CO transition the values ,«o=/"i or /.i0 = iu2, respectively (comp.
Fig. 3, lower diagram). (We usually suppress the /S-dependency of HA and
//0 and write only occasionally, for the sake of clarity, u A ( n ] and u 0 ( n ) . )

Proof. See Appendix A.

In the next step we prove the convergence of the chemical potentials
uA at fixed particle density:

Proposition 3.2. For B>Bc let n e ]0, 2[ be arbitrarily given and
u A ( n ) , u0(n) as in Lemma 3.1. Then it holds:

Proof. We prove the convergence along a sequence of local regions
(An)n e N, such that A n c A n + l, and show that for all A e £ there is a «e Fy
with AaAn.

First we choose ne ]0, 2[ such that j u 0 e R \ { ^ i l , / u 2 } . The convergence
nAk(n} k ^ M > n(/u) along such a sequence of local regions Ak is uniform on
compact convex sets [36, Theorem 25.7]. The convergence liningc /UA = [IO

for all «e]0, 2[ with jU0 =£{*!,/u2 then follows as in the proof of Prop. 3.5
in ref. 20.

Now let us assume that n is in one of the two coexistence regions of
the S-CO transition, i.e., {i0(n) = iul or /u2. We set n0=n\ and denote by
« l j 2 , «i <«2 ' tne boundary points of the possible particle densities in the
coexistence region, i.e., we have n e [ n l , n2]. Then choose an arbitrary e > 0
and HI, «2 with
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There exist n ,±<! with

and due to the monotonicity we have

With the continuity o f^ (« ) it follows

For each finite subsystem with Ake£, there are ^(«i), nAk(n2}
such that n(nAt(nl 2)) = «i 2- Now use the uniform convergence of
lim^co(-d/d^)/J/»,//y( t(i*),etfAJ /V'")=-(d/d^)/(/?,/<, w*") in a
suitably chosen closed interval to find a k0 e N such that for all k > k0 [ 36,
Theorem 25.71

With the monotonicity of n->{iAt(n) it follows

Since e>0 is arbitrary, we find with Eq. (3.15) for all / J 6 [ n 1 , n 2 ] :

This is independent of the chosen sequence ( A n ) n e N . Thus we have
UmAeSiiiA(n)=til, V«e[«, ,«2] , cf. [20, Appendix].

The convergence of the chemical potentials fiA enables us directly to
determine the limiting Gibbs states. In order to specify a limiting state with
a certain particle density «e]0, 2[, we have to find the H'*-accumulation
points of the net ((af'HA(f>A))AeS, prescribing for all AeS. that nA=nA(n)
according to Lemma 3.1. In order to show that these modified accumula-
tion points satisfy also the variational principle of the free energy density
we first observe that (HA(fiA)/\A\)AeS!, as a so-called approximately sym-
metric net, is applicable to the results of ref. 15, and then deduce from the
convergence of the chemical potentials that
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Thus both models, with fixed particle density «e]0, 2[ and with fixed
chemical potential f i 0 , have the same limiting free energy density as a func-
tional on SP(2I), which is, therefore, also minimal in the limiting equi-
librium states with fixed n.

Theorem 3.3. For /?>0 and «e]0,2[ , let /uA=/^A{n) and
/u0=fi0(n) as in Lemma 3.1.

(i) If n is chosen such that / ^o^ / " i ) /W2> we find the unique limiting
Gibbs state

where a/'"° is one of the three cases (3.9), (3.10), (3.11).

(ii) If ^0 = ^,, or /Mo=/<2 (f°r ft>Pc) the limiting Gibbs state is
uniquely given by

where the particle density n uniquely determines the weight A in the decom-
position of co;/""" into S- and CO-phase states (comp. Eq. (3.12)).

(iii) The unique central decomposition (into pure phases) of each
limiting Gibbs state is a specialization of

where 1 e [0, 1 ]. The mean-field values in the one-cell density operators QX

and the A, (1 —2.) depend uniquely on (/?, n), having trivial values in certain
regions.

Proof, (i) The uniqueness of the limiting Gibbs state for a fixed n
with n0(n) ^n\,Hi follows from the minimality of the free energy, discussed
before 3.3, and from the one-orbit argument.

(ii) For /i0 = fii,]u2 we know, as explained previously, that each
limiting Gibbs state ft/'" has the form



with co£g and eof-" as in (3.10)-(3.12). Since lim^l/l/l [)<>&£; A^> =:
nco^na: = limAeS(l/\A\Ko}i";NAy and lim, le£(l/MI)<« / ' ' / / '<< ' ' ' '); A^>
= n, X e [0, 1 ] is uniquely determined by n = A«co + (1 - X) «s.

(iii) The decomposition of a permutation invariant state into product
states is—as mentioned before—quite generally the unique central decom-
position.

The now proven convergence of the local Gibbs states at a fixed par-
ticle density n is somewhat subtle in the coexistence region: It depends on
the way the net of local chemical potentials nA(n) converges, and not
merely on its limit. Consider, e.g., the coexistence region with n < 1, where
we have the convergence \imAeS f t A ( n ) = [ t l , but where we have different
limiting Gibbs states depending on the «-index of the net. The latter limit-
ing Gibbs states may even be mutually disjoint: Choose for n the particle
densities «co and «s on the boundary of the coexistence region with
corresponding local chemical potentials ^° and n*A. Then it holds
lim^ea/<? ) = lim^s je^, but w*-limAsaa/-"^0) = co& * a,** =
w*-lim/i6Ca/>/f'<('''<). As we see from (3.10) and (3.11) the pure phase com-
ponents in the central decompositions of co^g and a>£''1 are all pairwise
disjoint factor states being pairwise different homogeneous product states.
Thus the central measures (as measures on the set 3eS

p(?l)) are disjoint,
and from this we conclude (as, e.g., in ref. 37) that the states co^g and co"s"
are disjoint for themselves.

4. CONCLUSIONS

Our investigation has been devoted to the determination of the phase
diagrams of a model, which occurs for the description of bipolaronic super-
conductors (and antiferromagnetic materials). The model is originally
defined by a family of short range Hamiltonians depending on the finite
lattice regions, which are connected with the Hubbard model. After having
divided each local lattice into two sublattices a symmetrization of the
Hamiltonians over the cells of the bipartite lattices leads to a quasi-
microscopic mean-field model canonically associated with the short range
model. For its elaboration in the thermodynamic limit a rather recent
operator-algebraic scheme is applied, which ensures beside other things the
existence of the limiting free energy density and gives a general formula for
the effective Hamiltonians occurring in the stationarity conditions of the
free energy density (self-consistency equations) for the statistical pure phase
states. Besides the thermodynamic limit no further approximations are
employed to obtain the typical mean-field expressions in the symmetrized
theory, which allow for a numerical evaluation.
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In this way all pure phase states which minimize the limiting free
energy density are determined and are grouped into the three classes of
normal (N), charge ordered (CO), and superconducting (S) states accord-
ing to the kind of broken symmetry (cf., Table 1). Pure phase states with
simultaneous breaking of the gauge invariance and of the sub-lattice
exchange symmetry make the free energy stationary, but not minimal in the
present model. This two-fold symmetry breaking arises here rather in terms
of a coexistence region.

At this stage a detailed analysis of the indicated phase transitions and
critical points in terms of the purely statistical concepts of ref. 25 would
have been possible, but has been only briefly touched in the present work.
Let us supplement in this connection, that only the upper curves in the
diagrams of Figs. 2 and 4 signify simple critical points. In the lower
diagrams two bicritical points at Tc are visible. Using an equilibrium
ensemble without particle fluctuations, as systematically devised and
investigated in ref. 11, the boundaries of the present coexistence regions are
transformed into two further critical lines, which meet in tetracritical
points.

As one of our main results we have demonstrated how symmetry
arguments combined with convex analysis lead to the existence of unique
limiting Gibbs states in all of the various phase regions. For obtaining this
result the thermodynamic limit was performed first at fixed chemical poten-
tial fi and then at fixed particle density n. It is the latter limit, which allows
for a unique limiting Gibbs states in the coexistence regions of the S-CO
phase transitions. The different mixed phase states with equal (I and fj, and
varying density are locally approximated by means of different nets of local
chemical potentials with the same limit. In the coexistence region the (sym-
metric) limiting Gibbs state has a central decomposition into two orbits of
pure phase states with broken symmetry. This strategy for treating the
coexistence region may in principle be generalized to a large number of
models with discontinuous phase transitions, cf., e.g., ref. 23.

In all the mentioned cases the limiting Gibbs states in their central
decompostion contain the full information on all possible phases for given
ft and ju. They would provide also the natural reference state for recon-
structing the quantum theory via the GNS-representation, to treat local
dynamical disturbances from equilibrium. (The study of the gap and of
other stable spectral features will be performed in a future investigation
leading to so-called spectral phase diagrams.) In this representation the
phase structure for given ft and n 's also reflected by the operator form of
the represented fields. Since we have two types of long range order
(diagonal long range order for breaking the lattice exchange symmetry and
off-diagonal long range order for the broken gauge invariance) we have
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two types of field operators at infinity, which characterize the respective
condensed particles. Let us mention in our Conclusions only the condensed
bipolaron operators, which may be obtained by averaging the normal fields
over the lattice.

For the simple mean-field model with homogeneous lattice,119' we
have already shown120'30) that the condensed pairs in the superconducting
phase show a similar operator structure as in the BCS-model.<38'39) The
only difference is that the limits are performed in configuration or momen-
tum space, respectively. In the S-phase of the pure and mixed phase region
we find also in the present model

By 77S we denote the GNS-representation of the limiting Gibbs state co^""
in the S-phase region (comp. Eq. (3.11)). Using the central decomposition
of co^, we find the direct integral decomposition of the corresponding von
Neumann algebra which gives the above explicit form of the condensed
local pair operators in terms of their components.

The creation operators for condensed local pairs are purely classical
because they are central, i.e., they commute with all observables in the
represented quasi-local electron algebra. They have nothing in common
with bosonic creation operators. It is an interesting problem, whether this
peculiar structure of condensed pair operators is in its basic form a univer-
sal feature of superconductivity. Our experiences with BCS- and Hubbard-
like mean-field models would confirm this hypothesis, but it seems to be in
conflict with the operators for Goldstone bosons, which also should arise
from the broken gauge invariance.

In contradistiction to two weakly coupled superconductors, as they
occur, e.g., for the spatially separated subsytems of a Josephson junction,
the present condensed bipolarons have lost their association with the sub-
lattices. First the constant in front of the integral does not depend on the
sub-lattice index. More decisively, the central decomposition of the super-
conducting limiting Gibbs states exhibits only one macroscopic phase. The
condensed bipolarons from the sublattices are uniformly phase locked,
such that the macroscopic phase variable cannot be used to discriminate
between the sublattices. This is typical for a strong coupling, where here
this coupling between the different lattices produces even the superconduc-
tive phase within each of the sublattices.



Concerning the physical relevance of our model treated in the grand
canonical ensemble, one has for the antiferromagnetic interpretation
experiments, which confirm the coexistence region.'40"4" In the super-
conductor language, which we have preferred in our elaboration, the con-
nection with real (high-Tc) substances is rather involved/43' but a mixed
pure phase seems to be envisaged as physically possible. In any case, an
experimental discrimination between a mixture of spatially non-separated
components to form a pure phase or to form a composite phase presup-
poses a concisely formulated conceptual background.

APPENDIX. PROOFS OF SUBSECTION 3.2

Lemma A.1. Let be /?>(), [ie R. Denote by nv, n2 with j>tl </n2 the
chemical potentials where the S-CO phase transition takes place (if there
is some). Then it holds:

(i) n -* fA(fi, HA([t), coP'"^) is a twice differentiate concave func-
tion on R.

(ii) 0-*/(/?,0,a>A") :=HmAeSlfA(p,HJl(fi),a>il-'') = limJ1.s,fA(p,
HA(ft), a>P'"A^) is a differentiable concave function on ] — oo,/*^,
] / " i> / "2 [> ar|d ] /»2> °o[- If there is no S-CO transition fj. -»/(/?,/<, a/"") is
differentiable and concave on R.

Proof, (i) Follows by direct inspection, see, e.g., ref. 20.

(i) For the convergence of A -* fA(P, HA(^}, ft/""), see [17, Theorem
4.3]. The concavity of p ->/(/?, n, co^"") is a consequence of the minimum
principle for the free energy density of limiting Gibbs states. The differen-
tiability of n -»/(/?, ii, o>^"") has to be verified by explicit calculation of
(d/dn)f(fl,/2,co"-'') with the help of (3.7), (3.9)-(3.11) and the limit in
(3.5). If there is a S-CO transition at / / l 5 //2, the corresponding particle
density which is the differential of the free energy density changes discon-
tinuously (see also proof of Lemma 3.1 below). These differentiability
properties are a general consequence for a mean-field system with the
above stated phase transitions.(25)

Proof of Lemma 3.1. (i) follows from \_HA(n), NA~\=0 for all A e £
and a(NA/\A\)<=[Q, 2], Moreover, it is
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Due to the concavity of // -*fA(P, HA(n), (o1*-"^) we find that fj, ->
nA(ti) = <.(af-"'>('l);NA/\A\'y is a bijective function nA: U^> ]0, 2[.



This limit is independent of the chosen sequence (An)neN. Thus we have
lim^X^""^'"'; NA/\A\y = -(d/d/u)f(ft,/u,co/i-") [20, Appendix]. The
uniqueness of /u0 follows with (3.7) and (3.13).
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